Univariate 3. 적분 선형확률 과정 ( Integrated Linear Process )

세부 알고리즘:

  • ARIMA(Auto-Regressive Integrated Moving Average)
  • SARIMA(Seasonal ARIMA)


6. ARIMA(Auto-Regressive Integrated Moving Average)

\[ARIMA(p,d,q)\]
  • 1) 1 이상의 차분이 적용된 \(\Delta^d Y_t = (1-L)^d Y_{t}\)가
  • 2) 알고리즘의 차수(\(p,q\))가 유한한 \(AR(p)\)와 \(MA(q)\)의 Linear Combination


비정상성을 가진 time series \(Y_t\)를 차분하여 생성된 \(\Delta Y_t = Y_t - Y_{t-1} = (1-L) Y_{t}\)

  • 1) 정상성을 따르고
  • 2) ARMA 모형을 따르면

\(Y_t\)를 ARIMA 모형이라 한다


보다 general 하게, \(d\) 번 차분 한 경우 :

  • 적분차수(Order of Integrarion)가 \(d\)인 ARIMA(p,d,q)
  • example)
    • \(p=0\): ARIMA(0,d,q) = IMA(d,q)
    • \(q=0\): ARIMA(p,d,0) = ARI(p,d)


파라미터 소개

Parameters Description
\(p\) order of the autoregressive part
\(d\) degree of differencing involved
\(q\) order of the moving average part

(1) ARIMA(p=0,d=1,q=1) = IMA(d=1,q=1)

(a) d=1번 차분한 뒤

(b) MA(q=1)를 따른다


정리하자면…

  • \(\Delta Y_t=Y_t - Y_{t-1} = \epsilon_t + \theta_1 \epsilon_{t-1}\).

  • \(Y_t = Y_{t-1} + \epsilon_t + \theta_1 \epsilon_{t-1}\).
  • \(Y_t = \epsilon_t+(1+\theta)\epsilon_{t-1}+(1+\theta)\epsilon_{t-2}+(1+\theta)\epsilon_{t-3}+\cdots\).

\(Corr(Y_t, Y_{t-1}) = \rho_i \approx 1\).


(2) ARIMA(0,2,1) = IMA(2,1)

(a) d=2번 차분한 뒤

(b) MA(q=1)를 따른다

\(\Delta^2 Y_t = (1-L)^2 Y_{t} = \epsilon_t + \theta_1 \epsilon_{t-1}\).


(3) 모형 차수결정 정리

  • 예측하기 이전에, parameter ( = p, q ) 에 따라 모형이 어떠한 모습을 띌 지 예상해봐야!

  • \(p\), \(q\) 파라미터 추론(by ACF and PACF):

    • 정상성 형태 변환
    • ACF​ & PACF 도식화


figure2


7. SARIMA(Seasonal ARIMA)

  • 요약 : ARIMA + 계절성 패턴

  • 형태 : Multiplicated SARIMA(p,d,q) x (P,D,Q,m)


\[\begin{align*} \text{SARIMA} && \underbrace{(p, d, q)} && \underbrace{(P, D, Q)_m} \\ && {\uparrow} && {\uparrow} \\ && \text{Non-seasonal part} && \text{Seasonal part} \\ && \text{of the model} && \text{of the model} \\ \end{align*}\]

( where \(m =\) seasonal lag of observations )


[ Summary ]

1) ARIMA(p,d,q)

\((1-\phi_1L - \cdots - \phi_p L^p) (1-L)^d Y_{t} = (1 + \theta_1 L + \cdots + \theta_q L^q) \epsilon_t\).

  • ARIMA(1,1,1)

    \((1 - \phi_{1}L) (1 - L)Y_{t} = (1 + \theta_{1}L) \epsilon_{t}\).


2) SARIMA(p,d,q)\((P,D,Q)_m\)

\((1-\phi_1L - \cdots - \phi_p L^p) (1 - \Phi_{1}L^{m} - \Phi_{2}L^{2m} - \cdots - \Phi_{P}L^{Pm}) (1-L)^d (1-L^{m})^D Y_{t} =\\ (1 + \theta_1 L + \cdots + \theta_q L^q) (1 + \Theta_{1}L^{m} + \Theta_{2}L^{2m} + \cdots + \Theta_{Q}L^{Qm}) \epsilon_t\).

  • SARIMA(1,1,1)(1,1,1\()_4\)

    \((1 - \phi_{1}L)~(1 - \Phi_{1}L^{4}) (1 - L) (1 - L^{4})Y_{t} = (1 + \theta_{1}L)~ (1 + \Theta_{1}L^{4})\epsilon_{t}\).

  • SARIMA(1,2,1)(1,2,1\()_4\)

    \((1 - \phi_{1}L)~(1 - \Phi_{1}L^{4}) (1 - L)^2 (1 - L^{4})^2 Y_{t} = (1 + \theta_{1}L)~ (1 + \Theta_{1}L^{4})\epsilon_{t}\).

Parameters Description
\(p\) Trend autoregression order
\(d\) Trend difference order
\(q\) Trend moving average order
\(m\) the number of time steps for a single seasonal period
\(P\) Seasonal autoregression order
\(D\) Seasonal difference order
\(Q\) Seasonal moving average order

Tags:

Categories:

Updated: