Skip links

  • Skip to primary navigation
  • Skip to content
  • Skip to footer
AAA (All About AI)
  • PRML
  • ML
  • DLF
  • TS0
  • TS
  • MAMBA
  • LLM
  • TAB
  • DIFF
  • AUDIO
  • ASSET
  • STUDY
  • GIT
  • SQL
  • PYTHON
  • FP
  • DOCKER
  • KUBER
  • CS
  • MLOPS
  • JAVA
  • R
  • OS
  • CV
  • NLP
  • GAN
  • RL
  • RS
  • SSL
  • CL
  • CO
  • GNN
  • DA
  • BNN
  • META
  • CONT
  • RELI
  • INTE
  • MULT
  • CI
  • ABSA
  • HBERT
  • STAT
  • DE
  • PPT
  • ETC
  • about me
    Seunghan Lee

    Seunghan Lee

    Deep Learning, Data Science, Statistics

    • Seoul, S.Korea
    • Email
    • GitHub
    • Email

    Interpretable Deep Learning

    [interpretable] (paper 6) Neural Additive Models ; Interpretable Machine Learning with Neural Nets

    2 minute read

    NAMs

    [interpretable] (paper 5) Towards Automatic Concept-based Explanations

    1 minute read

    Towards Automatic Concept-based Explanations

    study(paper 4)uncertainty Aware attention for reliable interpretation and prediction

    3 minute read

    Attention mechanism

    [interpretable] (paper 3) Interpretability Beyond Feature Atribution ; Quantitative Testing with Concept Activation Vectors (TCAV)

    5 minute read

    TCAV

    [interpretable] (paper 2) Grad-CAM ; Visual Explanations from Deep Networks via Gradient-based Localization

    3 minute read

    Grad-CAM

    [interpretable] (paper 1) Why Should I Trust You? Explaining the Predictions of Any Classifier

    5 minute read

    LIME (Local Interpretable Model-agnostic Explanations)

    • GitHub
    • Email
    • Feed
    © 2025 Seunghan Lee. Powered by Jekyll & Minimal Mistakes.