CRPS (Continuous Ranked Probability Score)


Contents

  1. Motivation
  2. CRPS (Continuous Ranked Probability Score)
  3. Intuition


1. Motivation

Metric for DISTRIBUTION


Bayseian ML’s prediction

  • point-wise (X)
  • distribution (O)


Prediction could be ..

  • (parametric) estimated parameters of a distribution

  • (nonparametric) samples from MCMC


So … how to evaluate??

\(\rightarrow\) Continuous Ranked Probability Score


2. CRPS (Continuous Ranked Probability Score)

Score function ( = metric ) that compares

  • (1) single GT
  • (2) predicted CDF


\(C R P S(F, y)=\int\left(F(x)-\mathbf{1}_{\{x \geq y\}}\right)^2 d x\).

  • both applicable to …
    • parametric : CRPS
    • non-parametric : eCDF ( emprical CDF )


Compute CRPS for each observation ( in test data )

& Aggregate them using (weighted) average

\(\sum_i w_i \cdot \int\left(\hat{F}_i(x)-\mathbf{1}_{\left\{x \geq y_i\right\}}\right)^2 d x ; \quad \sum_i w_i=1\).


3. Intuition

point-wise vs distn \(\rightarrow\) distn vs distn

( feat degenerate distn )


Example) if GT point-wise value is 7 …

\(P(7 \leq y)=1_{\{y \geq 7\}}= \begin{cases}0 & \text { if } y<7 \\ 1 & \text { else }\end{cases}\).

( = valid CDF … since it satisfies all the requirements of CDF )


We want the predictied distn & point-wise\(\rightarrow\) degenerate distn to be close!

= the red area below to be SMALL

figure2


Reference

  • https://towardsdatascience.com/crps-a-scoring-function-for-bayesian-machine-learning-models-dd55a7a337a8

Categories: ,

Updated: