Discrete Fourier Transform

참고 : https://www.youtube.com/watch?v=fMqL5vckiU0&list=PL-wATfeyAMNrtbkCNsLcpoAyBBRJZVlnf


1. Continuous vs. Discrete

We have to handle it in discrete space.

figure2


ex) Digitalization

  • by sampling at interval

figure2


figure2


2. DFT

\(\hat{x}(f)=\sum_n x(n) \cdot e^{-i 2 \pi f n}\).

figure2


Solution 1) Time

consider \(f\) to be a non-zero FINITE time interval

  • \(x(0), \cdots x(N-1)\).


Solution 2) Frequency

compute transform for FINITE number of frequencies

number of frequency (\(M\)) = number of samples (\(N\))

  • why same?
    • (1) inversible transformation
    • (2) computational efficiency


Result:

\(\hat{x}(k / N)=\sum_{n=0}^{N-1} x(n) \cdot e^{-i 2 \pi n \frac{k}{N}}\).

  • \(\int \rightarrow\) \(\sum_{n=1}^{N-1}\) : solution 1)
  • \(f \rightarrow\) \(k/N\) : solution 2)
    • where \(k=[0, M-1]=[0, N-1]\)


\(f \approx F(k)=\frac{k}{N T}=\frac{k s_r}{N}\).

  • \(k\) : frequency of \(k\) ( = Hz)
  • \(T\) : sampling period
  • \(N\) : number of samples
  • \(s_r\) : sampling rate ( = inverse of \(T\) )


3. Redundancy in DFT

figure2

  • Symmetric!


Symmetric on \(k=N/2\) … Why?

\(k=N/2\) \(\rightarrow\) \(f \approx F(k) = F(N/2) = s_r/2\)

This means that we only have to look at the left hand part!


DFT \(\rightarrow\) Fast FT (FFT)

DFT : \(O(N^2)\)

FFT : \(O(N \log_2 N)\)

\(\rightarrow\) by exploiting redundancies!

( limitation: FFT works when \(N\) is a power of \(2\) )

Categories: ,

Updated: