STCGAT : Spatial-temporal Causal Networks for complex urban road traffic flow prediction (2022)


Contents

  1. Abstract
  2. Introduction
  3. Methods
    1. Problem Formulation
    2. Model Architecture
    3. Spatial Dependence Modeling
    4. Temporal Dependence Modeling
    5. Traffic Flow Forecasting Layer


0. Abstract

Traffic Data

  • nonlinear & complex spatial correlations
  • have Spatial-temporal relationships


Existing methods

  • usually use FIXED traffic road network topology map
  • usually use INDEPENDENT TS modules

to capture “Spatial-temporal relationships”


Modules

  1. GAT ( Graph Attention Networks )
    • dynamically captures the spatial dependence of the traffic network
  2. CTCN ( Causal Temporal Convolutional Network )
    • analyze the causal relationship of the traffic data
    • obtain the overall temporal dependence


1. Introduction

Basic models

  • CNN : spatial dependence ( + Euclidean data)
  • RNN : temporal dependence
  • GCN : spatial dependence ( + non-Euclidean data)


Hybrid models

  • GCN + RNN : have still drawbacks…

    • (1) since GCN uses Laplacian feature matrix of graph

      to compute/update feature info of all nodes

      \(\rightarrow\) poor flexible & scalable

    • (2) chain sructure design of RNNs

      \(\rightarrow\) strictly follow the chronological development

      \(\rightarrow\) unable to predict the future & can’t capture the potential causal relationships


STCGAT ( Spaital-Temporal Causal Graph Attention Network )

  • STCGAT = (1) GAT + (2) CTCN

  • Adaptively models the traffic road network spatially

    & dynamically captures the spatial dependencies


Contribution

  • propose a new spatial-temporal network for modeling spatial-temporal data
  • use GAT to model spatial information
  • use CTCN for modeling TS data
    • captures the overall temporal dependence
    • uncover potential causal associations


2. Methods

(1) Problem Formulation

Traffic Information

  • traffic flow
  • traffic density
  • traffic speed


Notation

  • Graph : \(G=(V, E, L)\)
    • node : \(V=\left\{v_{1}, v_{2}, \cdots, v_{N}\right\}, \mathrm{N}\)
    • edge : \(E\)
  • Relationship with neighboring nodes :
    • \(v_{i, j}= \begin{cases}\frac{1}{d_{i, j}}, & \text { if } v_{i} \text { and } v_{j} \text { are connected } \\ 0, & \text { otherwise. }\end{cases}\),
  • Distance between \(v_i\) & \(v_j\) : \(d_{i,j}\)
  • Connectivity matrix : \(L\)
    • \(L = D^{-\frac{1}{2}}AD^{-\frac{1}{2}}\).
      • \(D\) : degree matrix of adjacency matrix \(A\)
  • Feature Matrix : \(M=\left\{X_{t-n}, X_{t-(n-1)}, \cdots, X_{t}\right\}\)
  • Model :
    • \(\left[X_{t+1}, \cdots, X_{t+T}\right]=f\left(G ;\left(X_{t-n}, X_{t-(n-1)}, \cdots, X_{t}\right)\right)\).
  • Dimension :
    • \(M \in R^{N \times n}\),
    • \(X_{i} \in R^{N \times 1}\).


(2) Model Architecture

STCGAT consists of 3 components

  • (1) GAT layer : spatial correlation between road nodes
  • (2) CTCN layer : causal temporal CNN
    • mainly composed of combination of BiLSTM & TCN
  • (3) Prediction layer : FC network


(3) Spatial Dependence Modeling (GAT)

figure2


Use attention of GAT to calculate the attention chef between road nodes

Notation ( of 2 inputs to GAT )

  • set of feature vector : \(X=\left\{\overrightarrow{x_{1}}, \overrightarrow{x_{2}}, \cdots, \overrightarrow{x_{N}}\right\}\left(\overrightarrow{x_{i}} \in R^{N \times F}\right)\)
    • \(F\) : numer of node features
  • topology graph : \(G\)


using GAT, get new set of node feature vectors

  • \(H=\left\{\overrightarrow{h_{1}}, \overrightarrow{h_{2}}, \cdots, \overrightarrow{h_{N}}\right\}, \overrightarrow{x_{i}} \in \mathbb{R}^{F^{\prime}}\), where
    • \(\overrightarrow{h_{i}}=\sigma\left(\frac{1}{P} \sum_{p=1}^{P} \sum_{j \in N_{i}} \alpha_{i j}^{p} W^{p} \vec{x}_{j}\right)\)…. \(\overrightarrow{x_{i}} \in \mathbb{R}^{F^{\prime}}\)


(4) Temporal Dependence Modeling (CTCN)

Capture time-dependent information from complex traffic data


[RNN]

  • RNN can not capture hidden causal relationship well
    • ex) sudden traffic accident on current road may affect adjacent road afterward
  • traffic data are not always sequentiall correlated
    • Ex) unscheduled traffic road maintenance

\(\rightarrow\) Propose CTCN


CTCN

  • [purpose] capture the TS’s potential causality & temporal dependence
  • consists of 2 parts
    • (1) BiLSTM
      • to analyze the contextual information of timing data
      • to fuse the Spatial temporal relationships, use the node space feature set output from GAT as the input of BiLSTM
    • (2) TCN
      • to paralleize the temporal data output from BiLSTM,
      • to obtain global temporal correlation & long term dependence
      • use Causal Convolution & Dilated Convolution


figure2

  • combine (1) BiLSTM + (2) TCN
  • input the sequence of BiLSTM output into TCN at one time
    • output of BiLSTM \(S \in R^{N \times 2 d} \text { with feature vector } s^{i} \in \mathbb{R}^{2 d}\)
  • use the parallism of TCN & prediction mechanism to obtain global time dependence & capture longer time correlation


TCN uses residual connectivity

  • \(S^{i}=S^{i-1}+\phi\left(S^{i-1}\right)\),

    • \(S^{i} \in R^{N \times 2 d}\) is the output result of the i-th residual module

    • \(S^{i-1} \in R^{N \times 2 d}\) is the output result of the previous residual

  • final output result: \(\widetilde{S} \in R^{N \times 2 d}\).


figure2


(5) Traffic Flow Forecasting Layer

use FC network to process the CTCN output \(\widetilde{S} \in R^{N \times 2d}\)

\[Y^{\prime}=\left[X_{t+1}, X_{t+2}, \cdots, X_{t+T}\right]=\delta\left(W_{f} \cdot \widetilde{S}+b_{f}\right)\]
  • where \(Y^{\prime} \in R^{N \times T}\)
  • where \(W_{f} \in R^{2 d \times T}\) is the weight matrix


figure2

Tags:

Categories: ,

Updated: